单壁碳纳米管应用于电动汽车高性能电池


汽车制造工业正在从内燃机汽车向电动汽车转型,而电动汽车的关键部分就是锂离子电池。汽车工业长期以来一直在寻找驱动新一代锂离子电池的技术。

单壁碳纳米管是解决电池的技术问题的关键

TUBALL™单壁碳纳米管可提升能量密度、充电倍率、延长使用寿命和成本减低等锂离子电池性能指标,是解决以上主要技术难题的解决方案。

TUBALL™单壁碳纳米管助力硅负极大规模生产

在电池充放电过程中的硅膨胀,是一个关键性的但仍需解决的问题,这现象导致硅材料开裂及颗粒之间的失去连接。

目前,TUBALL™单壁碳纳米管是能够形成长程、具韧性、高导电性网络结构的材料,即使在严重的体积膨胀和开裂情况下也能确保硅负极颗粒之间的连接性。

可防止负极失效,延长负极使用寿命,足以满足电动汽车制造商最严格的要求。

TUBALL™导电网络将使硅负极使用寿命延长至4倍

龙头锂离子电池制造商已经证明,添加TUBALL™单壁碳纳米管可使负极掺入20%以上的SiO,并打破电池能量密度的记录—高达300 Wh/kg及800 Wh/l,比市场上现有的电池高15%。

OCSiAl研发团队的研究结果表明,TUBALL™单壁碳纳米管可使负极的SiO含量提高到90%,从而确保350Wh/kg能量密度。

TUBALL™单壁碳纳米管正极应用,改善电池的关键性能

由于其独特的性能,单壁碳纳米管的性能优于同类导电剂,并在能量密度、安全性、放电功率以及附着力方面确保锂离子电池的性能得到重大改进。

碳黑、多壁碳纳米管等传统的正极导电材料无法达成如此高的改进程度。

了解更多TUBALL™单壁碳纳米管在负极正极应用信息。

TUBALL单壁碳纳米管:使用方法

OCSiAl(奥科希艾尔)作为全球单壁碳纳米管制造商,已开发用于负极和正极的应用方案。TUBALL™ BATT材料为单壁碳纳米管在水或NMP(N-甲基吡咯烷酮)中的分散体。可在标准生产过程中直接添加。




Related videos:

Electric car rEVolution: why graphene nanotubes will be inside next-gen batteries

How do nanotubes work inside an electrode?


请与我们联系以讨论您的项目规格或索取样品


科学验证

Anode

Silicon Single Walled Carbon Nanotube-Embedded Pitch-Based Carbon Spheres Prepared by a Spray Process with Modified Antisolvent Precipitation for Lithium Ion Batteries

The pitch-derived soft carbon and SWCNTs provided an excellent conductivity, and the porous structure of the composite accommodated the stress produced by the Si expansion.


SCIENTIFIC_VALIDATION_PUBLISHED_DATE:
Anode & Cathode

High areal capacity battery electrodes enabled by segregated nanotube networks

High thickness and specific capacity leads to areal capacities of up to 45 and 30 mAh cm−2 for anodes and cathodes, respectively. Combining optimized composite anodes and cathodes yields full cells with state-of-the-art areal capacities (29 mAh cm−2) and specific/volumetric energies (480 Wh kg−1 and 1,600 Wh l−1).


SCIENTIFIC_VALIDATION_PUBLISHED_DATE:
Anode

All-Nanomat Lithium-Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility

The all‐nanomat full cell shows exceptional improvement in battery energy density – 479 Wh/kg battery, and Si-anode capacity – 1166 mAh/g.


SCIENTIFIC_VALIDATION_PUBLISHED_DATE:
Anode

Optimization of Graphite–SiO blend electrodes for lithium-ion batteries: Stable cycling enabled by single-walled carbon nanotube conductive additive

The use of SWCNT conductive additive enables graphite-free SiO electrodes with 74% higher volumetric energy and superior full-cell cycling compared to graphite electrodes.


SCIENTIFIC_VALIDATION_PUBLISHED_DATE:
Anode

Self-transforming stainless-steel into the next generation anode material for lithium ion batteries

Areal capacities greater than 10 mAh/cm2 and volumetric capacities greater than 1400 mAh/cm3 can be achieved.


SCIENTIFIC_VALIDATION_PUBLISHED_DATE:
Cathode

Rational design of a high-energy NCA cathode for Li-ion batteries

Replacing Denka black with SWCNT allows to reduce the carbon content to 0.2 wt% to further increase the energy density, and 2 wt% of PVDF was shown to benefit the cycling stability due to the mitigated PVDF-induced side reactions from its direct contact with NCA particles.


SCIENTIFIC_VALIDATION_PUBLISHED_DATE: