电动汽车用高性能单壁碳纳米管电池


电动汽车(EV)的所有关键参数仍落后于燃油车,这阻碍了电动汽车的真正普及。

单壁碳纳米管-提升锂离子电池关键性能

TUBALL™单壁碳纳米管是改善锂离子电池参数的主要技术挑战的解决方案,这些参数包括能量密度、充电倍率、循环寿命和成本。

硅负极:超过350 Wh/kg和1300 Wh/l

在电池充放电过程中,硅的膨胀是一个根本性的、尚未解决的问题,它会导致硅材料颗粒间的开裂和失去连接。

TUBALL™ 单壁碳纳米管覆盖在硅颗粒的表面,在它们之间形成高导电性和持久性的连接。这些长连接非常紧密且具有强大的导电性,即使当硅粒子在负极膨胀和材料开始开裂,通过单壁碳纳米管连接,粒子仍然保持良好的连接。这可以防止负极停止工作–大大提高的循环寿命,满足甚至电动汽车制造商的严苛要求。

TUBALL™单壁碳纳米管网络可将基于硅负极循环寿命延长4倍

领先的锂离子制造商已经证明,TUBALL™单壁碳纳米管可以制造出内部含有20% SiO的负极,从而达到破纪录的电池能量密度——高达300 Wh/kg和800 Wh/l,可以提供续航里程增加15%的锂离子电池。

OCSiAl研发团队测试结果验证,可以将负极中的SiO含量提高到90%,能量密度达到350 Wh/kg和1350 Wh/l。

正极:提升关键性能

由于其独特的特性,单壁碳纳米管的性能优于其他导电剂,在锂离子电池中提供放电功率、能量密度、附着力安全等方面的性能。锂离子电池正极中的性能提升是传统的导电添加剂,如炭黑或多壁碳纳米管无法企及的。

了解更过TUBALL™在正极负极材料中的使用

TUBALL™单壁碳纳米挂:使用方法

OCSiAl是全球专业单壁碳纳米管制造商,已经开发出用于正极和负极的即用型解决方案。TUBALL™ BATT在水中NMP中含有分散良好的纳米管,可以在标准制造过程中简单地将其混合。


硅负极应用

BATT H2O
Tuball
BATT H2O
单壁碳纳米管在水中的分散液,可用作锂离子电池的导电剂

应用

储能

材料

负极

载体

水、PVP、CMC、 PAA、其他

BATT H2O

正极应用

BATT NMP
Tuball
BATT NMP
单壁碳纳米管在NMP中的分散液,可用作锂离子电池的导电剂

应用

储能

材料

正极

载体

NMP(N-甲基吡咯烷酮)、PVDF(聚偏氟乙烯)、其他

BATT NMP

请与我们联系以讨论您的项目规格或索取样品

联系我们

科学验证

  • Anode

    Silicon Single Walled Carbon Nanotube-Embedded Pitch-Based Carbon Spheres Prepared by a Spray Process with Modified Antisolvent Precipitation for Lithium Ion Batteries

    The pitch-derived soft carbon and SWCNTs provided an excellent conductivity, and the porous structure of the composite accommodated the stress produced by the Si expansion.


    Published:
  • Anode & Cathode

    High areal capacity battery electrodes enabled by segregated nanotube networks

    High thickness and specific capacity leads to areal capacities of up to 45 and 30 mAh cm−2 for anodes and cathodes, respectively. Combining optimized composite anodes and cathodes yields full cells with state-of-the-art areal capacities (29 mAh cm−2) and specific/volumetric energies (480 Wh kg−1 and 1,600 Wh l−1).


    Published:
  • Anode

    All-Nanomat Lithium-Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility

    The all‐nanomat full cell shows exceptional improvement in battery energy density – 479 Wh/kg battery, and Si-anode capacity – 1166 mAh/g.


    Published:
  • Anode

    Optimization of Graphite–SiO blend electrodes for lithium-ion batteries: Stable cycling enabled by single-walled carbon nanotube conductive additive

    The use of SWCNT conductive additive enables graphite-free SiO electrodes with 74% higher volumetric energy and superior full-cell cycling compared to graphite electrodes.


    Published:
  • Anode

    Self-transforming stainless-steel into the next generation anode material for lithium ion batteries

    Areal capacities greater than 10 mAh/cm2 and volumetric capacities greater than 1400 mAh/cm3 can be achieved.


    Published:
  • Cathode

    Rational design of a high-energy LiNi0.8Co0.15Al0.05O2 cathode for Li-ion batteries

    Replacing Denka black with SWCNT allows to reduce the carbon content to 0.2 wt% to further increase the energy density, and 2 wt% of PVDF was shown to benefit the cycling stability due to the mitigated PVDF-induced side reactions from its direct contact with NCA particles.


    Published: